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Analysis of Millimeter Wave Phase Shifters

Coupled to a Fixed Periodic Structure
Jin Liu, Jerome K. Butler, Fellow, IEEE, Gary A. Evans, Fellow, IEEE, and Arye Rosen, Fellow, IEEE

Abstract-The propagation characteristics of an active plasma-
indnced millimeter wave phase shifter coupled to a fixed periodic

structure are discussed. The numerical calculation is based on an
improved boundary value solution. Like a normal dielectric slab
waveguide with a plasma layer, the grating waveguide dkplays
a phase shift with the increase of the plasma density. This phase
shift due to the significant change of the field distribution has
an impact on the modal attenuation coefficient. It results in the
scanning of the radiation beam in the vicinity of the second Bragg.
Especially, at both weak and strong plasma densities when the

mode losses are small, the resonances caused by the periodic

structure do not appear to be weakened. The results can be used

to design electronically controllable millimeter wave scanning
antennas.

I. INTRODUCTION

P ERIODIC STRUCTURES have been used in the design

of millimeter waveguide antennas because of their spe-

cial propagation characteristics in the vicinity of the Bragg

resonances [1], [2]. A simple way to introduce periodicity is

to incorporate a grating at a dielectric interface. The grating

structure can produce broadside radiation in the transverse

direction, and contra-directional mode-coupling [3] in the

vicinity of the second Bragg. In some applications it is

desirable to scan the beam. However, beam scanning with

a fixed grating period requires a change in the source fre-

quency, or the effective index of the propagating mode. An

adjustable propagation constant by using optical radiation has

been reported [4] and demonstrated on silicon waveguides by

using the free carrier effects of the semiconductor material

to modify the electric permittivity. Such a beam-steerable

semiconductor waveguide antenna with metal grating teeth

has been developed [5]-[7]. A numerical analysis of the light

induced grating structure was also developed [8].

The mechanism of a beam-steerable waveguide antenna

is based on the fact that the complex dielectric constant of

a semiconductor material such as silicon, is changed when
incident light photons generate electron-hole pairs producing

a plasma. The number of electron-hole pairs generate a plasma

density N inside the semiconductor, that is proportional to the

incident light intensity 1 that can be expressed as, [8]

(1)
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where tp is the thickness of the semiconductor layer, wL the

angular frequency of the light, R the reflectivity of the light

at the semiconductor surface, q the quantum efficiency of the

semiconductor layer, N is the excess electron-hole density, and

To the life time of the carriers. According to the Drude-Lorentz

theory [9], the complex dielectric constant can be written as [4]

where G is the dielectric constant of the passive semicon-

ductor material, w the frequency of the propagating wave,

wP~ the plasma frequency, and .v~relaxation frequency of the

ith carrier. Expressing the dielectric constant as n – jk =

~m, we may conclude that both refractive index n and
extinction coefficient k increase with the plasma density, and

the extinction coefficient may exceed the refractive index for

high values of the plasma density N [4]. At a high plasma

density, the semiconductor layer shows a strong metallic

characteristic.

Regarding the dielectric slab waveguide with a plasma layer

[10], it was found that the phase changed with increasing

plasma density. The phase shift was due to the change of

the propagation constant when the dielectric property of the

plasma layer changed from lightly absorbing to metallic;

this resulted in a significant difference between the field

distributions at a low plasma density and that at a high plasma

density. Because of the difference between the TE mode and

TM mode field distributions, the phase shifts of TE and TM

modes are in the opposite directions. In addition to the change

of the propagation constant, there is also a strong modification

of the wave attenuation [10]. At low plasma densities, the

attenuation coefficient is proportional to the imaginary part of

the refractive index, and it increases with the plasma density.

However, the attenuation is saturated and reaches a maximum

value, when the metallic characteristic of ‘the plasma layer
becomes increasingly significant and causes the highest loss

of propagating power. Then, with the plasma density reaching

a higher level, the attenuation coefficient decreases, and the

plasma layer actually becomes a metallic thin film.

In this paper, our focus is on a rigorous numerical analysis

of the propagation and radiation characteristics of a millimeter

waveguide with a fixed dielectric grating structure coated

with a light-induced plasma layer on the surface opposite to

the grating layer, shown in Fig. 1. This configuration of the

millimeter waveguide will have the second Bragg condition

occurring at 95 GHz. The lateral width of the waveguide is

assumed to be infinite with no variation in the y-direction.
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Light Induced Plasma Layer (Silicon)

Fig. 1. The configuration of the millimeter wave phase shifter with rectan-

gular grating profile. The grating period A = 1333 #m, grating tooth gap

w = 600 pm, grating layer thickness t = 180 pm, guiding layer thickness
d e 800 pm, and plasma layer thickness tP = 0.01 #m – 50 Pm.

The actual expression for the field distribution in a periodic

waveguide is obtained using the Floquet-Bloch expansion as

a solution of the wave equation. At Bragg resonances there is

a strong interaction between two major spatial harmonics that

have the appearance of “propagating” in opposite directions.

This phenomena is especially true in the vicinity of the second

Bragg condition (the fast wave region). The spatial harmonic

n = – 1 with a relatively small axial propagation constant,

causes significant propagation in the transverse direction,

so that the periodic waveguide exhibits radiation [11]. The

direction of the radiated beam is tied to the value of the

propagation constant, and will be shifted or scanned due

to the change of the propagation constant. If the periodic

waveguide has a light induced plasma layer with a controllable

dielectric constant, it can produce surface emission with an

adjustable radiation pattern. It is noted that at both high and

low plasma densities, the ohmic loss is negligible, and the

Bragg resonances are clearly visible from the w –/3 dispersion

curve. In our study, the plasma density is assumed to be

uniform throughout the layer. By using a transfer matrix

method, the boundary conditions at the interfaces of the

grating region may be obtained. The solution in the grating

region is based on the method proposed by Chang et al.

[12]. However, for the calculations discussed in the paper, the

single step implicit Runge-Kutta method is used as opposed to

the multistep formulation to solve the differential equations.

With this algorithm, the computing is more efficient, and the

accuracy and stability are improved.

We consider a thick sapphire waveguide with a rectangular

grating at the sapphire air (cg = 9.6, C. = 1.0) interface of

thickness t = 180 ~m, as shown in Fig. 1. The bottom of the

waveguide has a thin silicon layer. Its thickness tp ranges from

0.01 to 50 ~m and is less than 10% of the waveguide thickness.

The grating period of the waveguide is A = 1.333 mm, the

distance between the grating teeth w = 0.6 mm, and the

guiding layer thickness is 0.8 mm.

accurate solution of the periodic waveguide is based on the

Floquet–Bloch theory. The field in a periodic waveguide can

be expressed in terms of the Floquet-Bloch functions

co

T(r) = ~ Vn(z)e-7”z (3)

n.—cc

‘7. = @+j(b+nK). (4)

~ and a are the propagation and attenuation constants respec-

tively. Each term in (3) is called a spatial harmonic. Usually,

the n = O guiding spatial harmonic is dominant. However,

some harmonics may have relatively large amplitudes if there

is strong interaction with another harmonic [1]. In the periodic

waveguide, multiple guided modes may be excited. If the

propagation constant of the pth guided mode is denoted as

@J, then a resonance occurs provided

p(P) + P(9) = ~~, l,p, q=l,2,3, . . . . (5)

Modes operating near the second Bragg (1 = 2) are useful for

surface emitting devices, because the n = – 1 spatial harmonic

with a small longitudinal propagation constant becomes an

outward leaky wave.

There are many methods that can be used to solve the

periodic waveguide problem, such as the coupled-mode theory

[13], [14], perturbation techniques [15], [16], boundary-value

methods [12], and eigensystem methods [17]. The boundary-

value approach is an effective method used to analyze the

propagation characteristics. In this formulation it is assumed

that there is no y-dependence in the field distributions. Ac-

cordingly, the only field components are Ev, H., Hz for TE

modes and lty, EC, Ez for TM modes. In the grating region,

the electric permittivity can be written as a function of both

z and z, and Maxwell’s equations become a set of first

order partial differential equations. The periodic permittivity

function and its inverse in the grating region can be expanded

in a Fourier series so that, with (3) and normalized notation

for the electromagnetic fields

(6)

and we can discretize Maxwell’s equations as

‘r(z)=U(z)@(z)

d$x)
— = V(Z)!P(3J).

dx
(7)

II. NUMERICAL FOUNDATION ~(z) and V(z) are square matrices whose elements are func-

Frequently, modes in periodic structures are intuitively tions of the propagation constant and the Fourier coefficients of

visualized using approximate methods such as the coupled- the periodic permittivity in the grating region [12]. l?(x) and

mode formulation where the fields are described by the su- @(x) are column vectors with elements V~($) and On(x),

perposition of the backward and forward waves. However, an respectively.
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Fig. 2. The ,%0A-PA plot. The shadowed area is the fast wave region.

Alternatively, the above equation may be rewritten in an

integrated form as

Y’(z) = F(X)Y(Z) (8)

where

P] ‘(z)=[A)‘H “)y(~) = @(z) ,

F(x) in (8) represents the coupling between the spatial

harmonics due to the periodic structure. The field of each

spatial harmonic n in the other uniform layers can be expressed

in a plane wave form

Vm(z) = An Cos(hnx) + 13n sin(h,mx) (lo)

where the transverse wave vector

hn = k~= (11)

and e is the permittivity of the dielectric layer. The sign

of hn is chosen to obtain an outward transverse wave in

the superstrata and substrate. The outward transverse wave

in the superstrata and substrate also enable us to derive the

relation between !ln (~) and its derivative at the interfaces

of the grating layer. In a multiple layer system, the transfer

matrix method is an effective way to obtain such relations that

actually become the homogeneous boundary conditions of the

differential equations given by (7) in [12]

(w(t) & ~)ly(t) = o
R(t) ~+ (

(N(O) CJ ())@(o) = o
R(0) ~+ ( (12)

where t is the grating layer thickness, as shown in Fig. 1. The

elements in the square matrices R(x) and S(z) are related
to the parameters of the multiple dielectric layer structure,

such as, the layer thickness, permittivities, and the propagation

constant ,6 and attenuation constant a.

To solve (8), the square matrices are truncated, and only a

finite number of the spatial harmonics are used since spatial

harmonics with large In! values have negligible contributions

to the field distribution. In general, for the linear equation
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Fig. 3. The propagation and attenuation properties for TE modes in the

w&eguide wi& a r~ctanguku’ grating profil~ a~d a source frequency of 81.3

GHz (kofi == 2.27).

Y’ = f (z)Y, the fourth-order implicit Runge–Kutta formula
can be reduced into an explicit one to avoid time consuming

iterations. To apply the Runge–Kutt;i formula, the grating

region may be divided equally into n intervals. Generally, the

solution at Zi+l can be expressed in terms of that at Zi as

Y(zi+l) = [1 + Gi(z~)h]Y(q), i=o, 1,2, . . ..n.

Xo=o, . . ..zn=t (13)

where h is the thickness of each interval. The function

Gi (xi) is determined by the numerical formulation and the

characteristics of each interval.

Combining (13), (12), and (7) a set of homogeneous linear

equations can be derived as

M(7)Y(0) = O (14)

where M is a matrix which can be described by matrices

R(z), S(r), U(z), V(z), and G(x). The nontrivial solution of

Y(0) can be obtained under the condition

det IM(T)I = Cl. (15)

This secular equation must be satisfied by the complex prop-
agation constant ~ = a + j~, and it is solved for roots using

the Muller method. Since the formulation is analytically based,

the numerical error is mainly caused by the truncation of the

matrices and the number of intervals of the grating layer. It

was found that 11–17 spatial harmonics are sufficient for the

periodic millimeter waveguide with a strong grating. The num-

ber of intervals in the grating region depends on the accuracy
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Fig. 4. The propagation and attenuation constants for TM modes in the
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Fig. 5. Comparison of the attenuation characteristics for the TE mode. csP
is due to the plasma layeq aR is the attenuation only caused by the periodic

structure, @ includes both loss mechanisms.

of the numerical method for solving the differential equation.

By using 100–200 intervals in the grating layer, satisfactory

results can be obtained for the fourth order formulation.

III. PROPAGATION CHARACTERISTICS

The grating waveguide exhibits Bragg resonances with

significant attenuation due to radiation at operating frequencies

in the vicinity of the second Bragg condition. Such radiation

is caused by the n = – 1 spatial harmonic that has a small

longitudinal propagation constant. lf the n = – 1 harmonic is
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Fig. 6. The attenuation constant for the TE modes in the waveguide as a
function of the source wave vector k. A with different plasma densities.
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Fig. 7. The attenuation constant for the TM modes in the waveguide as a

function of the source wave vector k. A with different plasma densities.

treated as a component wave, in the view of ray optics, the

angle 0 of the propagation direction of the spatial harmonic to
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Fig. 8. The propagation and attenuation constants for tie TE modes in the

waveguide as the function of the source wave vector kOA in the vicinity of

the first Bragg under different plasma densities.

the normal direction is, shown in Fig. 1

‘=’an-’R’(*)“an-’(?~:))
()P-K

= sin’l —
nrlco

(16)

where h– 1 is the transverse wavevector of the n = – 1 spatial

harmonic

G
h_l = + dcz +72 (17)

c is the permittivity of the propagation media, and nr = ~

is the corresponding refractive index.

n = – 1 spatial harmonic propagating

air substrate is

,6-K <1

kf) “

The condition of the

in air superstrata and

(18)

In the superstrata or the substrate of the waveguide, if there is

a wave propagating in the direction which is not parallel to the

longitudinal direction, i.e., IOI <90°, then the electromagnetic

energy will be leaked or radiated from the waveguide to the

surrounding media. On the other hand, if

(19)

then total internal reflection will occur at the boundaries of

the waveguide, and the propagating wave will be “confined”

to the waveguide. According to (18) we can draw boundaries
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Fig. 9. The propagation and attenuation constants for the TE modes in the

waveguide as the function of the source wave vector k. A in the vicinity of
the first Bragg under different plasma densities.

in the dispersion diagram as shown in Fig. 2. In the shadowed

area, called the fast wave region, the radiated power and the

attenuation coefficient a become nonzero.

The propagation characteristics are examined as a function

of the plasma density. The curves in Figs. 3 and 4 display

many similarities to Figs. 2, 3, 6, and 7 of [10]. However,

the phase shift results in the rotation of the outward radiation

beam in the vicinity of the second Bragg. From (16), the shift

of the radiation angle can be expressed as

(20)
ko

.,

From Figs. 3 and 4, it can be estimated that the changes

of the radiation angle are –9.5° and 25.5° for TE and TM

modes, respectively, when the plasma density increases from

very low (N <1014 cm–3) to very high (N >1018 cm–3),
The sign of A(3 indicates the direction of beam scanning with

increase of the plasma density, which is clockwise for the TE

mode, and counter clockwise for the TM mode, respectively.

It is noted that the curves of the propagation constant and

the attenuation coefficient retain shapes similar to those of

the waveguide without a grating layer. The reason is that

the n = O guiding spatial harmonic is basically dominant

when the propagation constant of the periodic waveguide is

off resonance. Because of the weak coupling between spatial

harmonics, the propagation constant is very close to that of

the waveguide with the grating layer replaced by a dielectric

layer whose permittivity is equal to the mean value of that in

the grating layer. However, the grating does have a significant
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Fig. 10. The propagation and attenuation constants for the TE mode in the

waveguide as the function of the source wave vector kO A in the vicinity of

the second Bragg under different plasma densities.

impact on the attenuation coefficient. As shown in Figs. 3 and

5, the attenuation coefficient at high plasma levels is not as

small as in the case of the same waveguide without any grating

structure. This extra attenuation is contributed by the radiation

power loss, because the shift of the propagation constant

results in higher radiation loss in this particular situation.

To further analyze the attenuation, we recall that there are

two types of power loss in the waveguide: dissipation in the

plasma layer and radiation. Emission power is proportional

to the guided power, and the n = – 1 spatial harmonic can

be considered as the only term responsible for the radiation

in the vicinity of the second Bragg, since it has the largest

longitudinal propagation constant among the other spatial

harmonics. Accordingly, the amplitude of the attenuation

coefficient contribution from the outgoing n = – 1 spatial

harmonic may be defined as [16]

~R = Re{hOIQ-l(t)12 + hOIW_l(–tp – d)12}

/

(21)

2/3 m Iv,(z)l’ dz .
—m

The plasma layer has an ohmic power loss CIP in the absence

of a grating. To compare the contributions to the attenuation

from the plasma layer and from the periodic structure, ap

and ~R are evaluated numerically, shown in Fig. 5. ap is

the attenuation coefficient of a waveguide with the same

configuration as shown in Fig. 1, except the grating layer

is replaced by a uniform layer with an average permittivity

value equal to cgD + co ( 1 – D) where the duty cycle D =

1 – w/A. ~R is the attenuation coefficient of a waveguide
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Fig. 11. The propagation and attenuation constants for the TE mode in the

waveguide as the function of the source wave vector kO A in the vicinity of
the second Bragg under different plasma densities.

with the same configuration without the thin plasma layer. CYp

and ~R are the attenuation coefficient caused by the plasma

layer and the radiation, respectively. Additionally, the total

a obtained previously includes contributions from the plasma

layer and the grating. It is clear that a = ap + ~R as shown

in Fig. 5. This reveals that the attenuation due to the presence

of the plasma layer is small at very low and very high plasma

densities, and the attenuation is mainly due to the radiation

power loss. At some intermediate level of plasma density,

the attenuation caused by the plasma ohmic losses reaches

maximum, and the guided power is highly dissipated, while

the radiation power loss is almost unaffected.

The overall attenuation constants near the first and second

Bragg conditions are shown in Figs. 6 and 7, as a function

of the plasma density N(cm–3). The details of the TE mode

in the vicinity of the first and second Bragg are shown in

Figs. 8–1 1. These curves indicate that the fine structures of

the Bragg resonances can not be observed because the highly

absorbing plasma layer results in a much larger attenuation

coefficient. However, at very high plasma densities, those

resonances appear again in the attenuation and propagation

curves. Another interesting phenomenon is that there are extra

resonances between the first Bragg and the boundary of the fast

wave region, for both TE and TM modes, as shown in Fig. 6.

Numerical calculations show that the resonances are caused

by the coupling between the spatial harmonics associated with

the fundamental guided mode and the second guided mode, i.e.

p = 1, q = 2,1 = 1 in (5). However, at a high plasma density,

the resonance disappears from the attenuation curve in Fig. 6
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of the TE mode, while the resonance remains for the TM

mode, despite its shape. The disappearance of the resonance

occurs because the waveguide at high plasma density no longer

supports the second guided mode at the frequency considered.

This can also be explained by noting that the cut-off frequency

of the waveguide becomes higher for the TE mode, and lower

for the TM mode with the increase of the plasma density.

IV. CONCLUSION

The propagation characteristics of a waveguide with a fixed

grating and a light-induced plasma layer has been presented.

In the vicinity of the first Bragg resonance, the interaction

between the spatial harmonics – 1 and zero produces a high

attenuation of the propagating wave. Here, the periodic wave-

guide appears as a wave reflector or contra directional mode

coupler. However, with an increase in plasma density, the shift

of the propagation constant may causes the first Bragg to move

away from resonance, resulting in propagation through the

waveguide with minor loss. By using this mechanism, it is

possible to develop an optical fast switch to control the elec-

tromagnetic power propagation in the millimeter waveguide.

If the first Bragg condition is used to design a band reject

filter, the width and center frequency of the stop band can

be adjustable. In the vicinity of the second Bragg which is

inside the fast wave region, the periodic waveguide radiates

power. The light induced plasma layer can steer the radiation

beam. Particularly, at both high and low plasma densities, the

internal ohmic heating in the plasma layer is inconsequential.

Accordingly, the waveguide losses will be minimized, and the

sharp effects of the Bragg resonances are present.

The characteristics of the periodic waveguide described in

this paper have a common behavior that is exhibited by other

periodic waveguides. The impact of the optically controlled

plasma layer on the propagation and attenuation constants
can help in the development of various optically-controllable

millimeter wave devices.
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